Autoencoder Based Domain Adaptation for Speaker Recognition Under Insufficient Channel Information

نویسندگان

  • Suwon Shon
  • Seongkyu Mun
  • Wooil Kim
  • Hanseok Ko
چکیده

In real-life conditions, mismatch between development and test domain degrades speaker recognition performance. To solve the issue, many researchers explored domain adaptation approaches using matched in-domain dataset. However, adaptation would be not effective if the dataset is insufficient to estimate channel variability of the domain. In this paper, we explore the problem of performance degradation under such a situation of insufficient channel information. In order to exploit limited in-domain dataset effectively, we propose an unsupervised domain adaptation approach using Autoencoder based Domain Adaptation (AEDA). The proposed approach combines an autoencoder with a denoising autoencoder to adapt resource-rich development dataset to test domain. The proposed technique is evaluated on the Domain Adaptation Challenge 13 experimental protocols that is widely used in speaker recognition for domain mismatched condition. The results show significant improvements over baselines and results from other prior studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

On autoencoders in the i-vector space for speaker recognition

We present the detailed empirical investigation of the speaker verification system based on denoising autoencoder (DAE) in the i-vector space firstly proposed in [1]. This paper includes description of this system and discusses practical issues of the system training. The aim of this investigation is to study the properties of DAE in the i-vector space and analyze different strategies of initia...

متن کامل

Deep neural network-based bottleneck feature and denoising autoencoder-based dereverberation for distant-talking speaker identification

Deep neural network (DNN)-based approaches have been shown to be effective in many automatic speech recognition systems. However, few works have focused on DNNs for distant-talking speaker recognition. In this study, a bottleneck feature derived from a DNN and a cepstral domain denoising autoencoder (DAE)-based dereverberation are presented for distant-talking speaker identification, and a comb...

متن کامل

Denoising autoencoder-based speaker feature restoration for utterances of short duration

This paper describes a speaker feature restoration method for improving text-independent speaker recognition with short utterances. The method employs a denoising autoencoder (DAE) to compensate speaker features of a short utterance which contains limited phonetic information. It first estimates phonetic distribution in the utterance as posteriors based on speech models and then transforms an i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017